
Computational methods and new results for
chessboard problems

Matthew D. Kearse Peter B. Gibbons

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
email: p.gibbons@auckland.ac.nz

Abstract

We describe various computing techniques for tackling chessboard dom­
ination problems and apply these to the determination of domination
and irredundance numbers for queens' and kings' graphs. In particu­
lar we confirm that "((QI7) = "((QI8) = 9, and show that "((Q14) = 8,
')'(QI5) "((Q16) = 9, ')'(QI9) = 10, i(QI8) = 10, 10 ::; i(Q19) ::; 11,
ir(Qn) = "((Qn) for 1 ::; n ::; 13, IR(Q9) = r(Q9) = 13, IR(QlO) =
r(QlO) = 15, ')'(Q4k+d = 2k + 1 for k = 16,18,20 and 21, i(Q22) ::; 12,
I R(Ks) = 17, I R(K9) = 25, I R(KlO) = 27, and I R(Kl1) = 36. We
calculate the number of non-isomorphic minimum dominating and inde­
pendent dominating sets in the queens' graph Qn for n ::; 15 and n ::; 18
respectively.

1 Introduction

Combinatorial problems on chessboards have been studied by combinatorialists and
puzzle-solvers for over 250 years. Investigations centre on the placement of the
various types of chess pieces, viz. kings, queens, bishops, rooks, knights and pawns,
on generalized n x n chessboards. For excellent surveys of work and results in this
area the reader is referred to [14, 18].

Given a graph G = (V, E), a set of vertices D in V is a dominating set if every
vertex in V \ D is adjacent to at least one vertex in D. The domination number
of G, denoted ')'(G), is the minimum cardinality of a dominating set in G. A set of
vertices S in V is independent if no two vertices in S are adjacent. The vertex inde­
pendence number of G, denoted j3(G), is the maximum cardinality of an independent
set of vertices in G. The independent domination number of G, denoted i(G), is the
minimum cardinality of an independent dominating set in G. The upper domination
number of G, denoted r(G), is the maximum cardinality of a minimal dominating
set of vertices in G. The closed neighbourhood of a set of vertices S, denoted N (S) ,

Australasian Journal of Combinatorics 23(2001), pp.253-284

is the set of vertices, including B, that are adjacent to a vertex in B. A set of vertices
B in V is irredundant if, for every vertex u in B, the set N(u) \ N(B \ {u}) :f- 0.
The irredundance number of G, denoted ir(G), is the minimum cardinality of a max­
imal irredundant set of vertices in G. The upper irredundance number of G, denoted
I R(G), is the maximum cardinality of an irredundant set in G.

These six domination, independence and irredundance numbers are related as
follows (see (7]):

ir(G) ~ ')'(G) ~ i(G) ~ f3(G) ~ reG) ~ IR(G).

Associated with each of the six chess pieces one can define a class of graphs. For
example the queens' graph Qn has a set of n2 vertices corresponding to the squares
of an n x n chessboard with two vertices adjacent if and only if a queen placed on
one square can attack the other square in one move. Note that on a chessboard a
queen attacks all squares on the same row, column and diagonal. In a similar manner
one can define the kings' graph K n, and graphs for the other chess pieces. Due to
the complexities of allowable pawn moves, the grid graph Gn (in which two squares
are adjacent if they are adjacent on the same row or column) is normally studied in
preference to the pawns' graph.

Determination of the six numbers defined above for the six classes of graphs gives
rise to 36 fundamental problems on chessboard domination. In work to date many
of the numbers have been completely determined for all values of n. For example
all six values have been determined for the rooks' graph. In other cases, values have
been determined, generally by computer search, for only small values of n, with
bounds established for other values. The development of improved search techniques
is important in enabling us to extend the set of known domination, independence
and irredundance numbers, thereby providing opportunities for further insight into
the complete spectrum of these values.

In this paper we describe probabilistic and exhaustive search techniques for tack­
ling chessboard domination problems, and apply these to the determination of dom­
ination and irredundance numbers for the queens' and kings' graphs. In particular
we describe previous work on these problems in Section 2. In Section 3 we de­
scribe the backtracking method and various refinements that have allowed us to
show that ')'(Ql5) = ')'(Q16) = 9, to confirm that ')'(Q17) = ')'(Q1S) = 9, to show that
')'(Q19) = 10, to show that i(Q18) = 10, and to improve the bound for i(Q19) to
10 ~ i(Q19) ~ 11. In section 4 we describe the application of reduction techniques
to chessboard problems, and use it to show that ir(Qn) = 'Y(Qn) for 1 ~ n ~ 13,
to show that I R(Ks) = 17, I R(K9) = 25, I R(KlO) = 27, and I R(Kl1) = 36, and
to show that IR(Q9) = rCQ9) = 13 and that IR(QlO) = fCQlO) = 15. Section 5
applies a local search method to generate dominating sets of size 2k + 1 in Q4k+1 and
to thereby confirm that ')'(Q4k+1) = 2k + 1 for 1 ~ k ~ 15, and to extend the result
to k :S 21. In addition we establish that i(Q22) ~ 12. Some concluding remarks are
presented in Section 6.

Throughout the paper quoted running times are for algorithms implemented in
the language C on an AlphaServer 2100 Model 4/275 running at 275 Mhz under

254

Digital UNIX V 4.0D. More details of the algorithms used are given in Kearse [19]
and Kearse and Gibbons [21].

2 Background

2.1 Queens Domination Problems

The first eight values of ')'(Qn) were given by Ball [1] in 1892. Since then there has
been much work on determining values for ')'(Qn) for larger n. Many bounds have
been discovered for ')'(Qn), the most well known being the lower bound due to Spencer
(private communication to Cockayne [9]) of ')'(Qn) 2:: n;-l. Since then, Weakley [28]
has obtained the improved bound for n of the form 4k + 1 of ')'(Q4k+l) ~ 2k + 1
for all k. In fact it has been suggested but not proven that ')'(Q4k+l) = 2k + 1
for all k, and this has been verified for k ::; 15. There have also been many upper
bounds developed for ')'(Qn). Burger, Cockayne and Mynhardt [4] have shown that
')'(Qn) ::; ~n + 0(1). Obviously, any lower bound for ')'(Qn) is also a lower bound
for i(Qn). However, upper bounds for ')'(Qn) do not hold for i(Qn). The best known
upper bound of i(Qn) ::; f2n + 0(1) was discovered by Eisenstein, Grinstead, Hahne
and Van Stone [12]. Recently Weakley [29] has shown that if n == 1 (mod 4) and
D is a d-element dominating set of Qn of a particular, commonly used kind, then
')'(Qk) ::; ~!~k + 0(1). Also if D is independent, then i(Qk) ::; ~!~k + 0(1).

A list of known values for ')'(Qn) and i(Qn) for small n are given in Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
')'(Qn) 1 1 1 2 3 3 4 5 5 5 5 6 7 ::;8 ::;9
i(Qn) 1 1 1 3 3 4 4 5 5 5 5 7 7 8 9

n 16 17 18 19 20 21 22 23 24 25
')'(Qn) ::;9 9 9 ::;10 ::;11 11 < 12 < 12 < 13 13
i(Qn) 9 9 ::; 10 ::;11 ::; 11 11 ::; 13 ::; 13 < 13 13

Table 1: Known values for ')'(Qn) and i(Qn).

2.2 Queens Lower Irred undance

Very little is known about the queens lower irredundance number ir(Qn). In fact no
case is known where ir(Qn) < ')'(Qn) although Fricke et al. [14] suspect that the value
of ')'(Qn) - ir(Qn) can be arbitrarily large. The only known bound is ir(Qn) 2: nt1

which is obtained from the bounds ir(G) 2:: "Y(Gd+! for all graphs G, and Spencer's
bound ')'(Qn) 2:: n;-l, Values of ir(Qn) for small n are: ir(Ql) = ir(Q2) = ir(Q3) =
1, ir(Q4) = 2 (Hedetniemi et al. [18]), ir(Q5) = ir(Q6) = 3 (Burger and Mynhardt
[5]), and ir(Q7) = 4 (Cockayne and Mynhardt [10]).

255

2.3 Queens Upper Irredundance and Domination

The queens upper domination number f(Qn) and upper irredundance number f R(Qn)
have had relatively little study until recently. Weakley [28] was one of the first to
investigate f(Qn) and to discover that f(Qn) > f3(Qn) was possible. He also proved
that f(Qn) 2: 2n - 5. This bound was later improved by Burger, Cockayne and
Mynhardt [4] to f(Qn) 2: ~n - 0(1). Kearse ([20]) has further improved this bound

to fR(Qn) 2: 6n - O(n~).
The best upper bound of fR(Qn) :::; l6n + 6 - 8Jn + Vn + IJ for n 2: 6 is due

to Burger, Cockayne and Mynhardt [4), and is a slight improvement on the bound
originally given by Cockayne of fR(Qn) ~ l6n + 6 - 8vn + 3J for n 2: 6. There is
no known upper bound for f(Qn) other than that of f R(Qn). A list of known values
for r(Qn) and f R(Qn) is given in Table 2.

n 1 2 3 4 5 6 7 8 9 10
f(Qn) 1 1 2 4 5 7 9 11
fReOn) 1 1 2 4 5 7 9 11

Table 2: The known upper irredundance and domination numbers for the queens'
graph.

2.4 The Kings' Graph

In the kings' graph two squares are adjacent if they lie on the same or adjacent
columns as well as the same or adjacent rows. Unlike the queens' graph, many
problems involving the kings' graph have been solved, in that optimal solutions
to arbitrary sized boards can be constructed. In particular, in 1954 Akiva and
Isaak Yaglom [30] proved among other results that ')'(Kn) = i(Kn) = L n;2 J2, and
that f3(Kn) = L nt1 J2. However, little is known about solutions to the other three
problems. It is known than that ir(Kn) < ')'(Kn) is possible, and that f3(Kn) < f(Kn)
is possible. Favaron et al. [13] have shown that for n > 1 , (n~1)2 :::; f R(Kn) :::; rf
(with the upper bound applying for n 2: 6).

A list of known domination, independence and irredundance numbers for the
kings' graph is given in Table 3.

2.5 Terminology

In referring to the positions on a chessboard we often identify the squares using x and
y coordinates which start from 0 and increase across and down the page respectively.
In some cases it is desirable to order the squares and to identify them with a single
integer. In this case, we begin with the top left square and proceed to order the
squares column-wise. Refer to Figure 1 for an example of this numbering on a 4 x 4
board.

256

n 1 2 3 4 5 6 7 8 9 10
ir(Kn) 1 1 1 3 4 4 8 9 9
'Y(Kn) 1 1 1 4 4 4 9 9 9 16
i(Kn) 1 1 1 4 4 4 9 9 9 16
f3(Kn) 1 1 4 4 9 9 16 16 25 25
f(Kn) 1 1 4 4 9 9 16
IR(Kn) 1 1 4 4 9 9 16

Table 3: The known domination, independence and irredundance numbers for the
kings' graph.

(0,0) (1,0) (2,0) (3,0)
1 5 9 13

(0,1) (1,1) (2,1) (3,1)
2 6 10 14

(0,2) (1,2) (2,2) (3,2)
3 7 11 15

(0,3) (1,3) (2,3) (3,3)
4 8 12 16

Figure 1: The chessboard square numbering convention used in this paper.

There are two main ways of identifying diagonals in the literature. Diagonals
that move down and to the right are called down or positive diagonals, and similarly
diagonals moving up and to the right are up or negative diagonals.

3 Backtracking and refinements

3.1 The Basic Backtracking Algorithm

Backtracking is a well known exhaustive search method that involves systematically
generating partial solutions, and trying to extend each to a full solution. If an
extension is not possible then the algorithm backtracks to consider the next partial
solution in order. The technique dates back for at least 100 years (see [22] for
example) and has since been successful in its application to a vast array of problems
(see [2]).

In [16] Gibbons and Webb described the application of backtracking to the in­
dependent queens domination problem, and were able to determine the values of
i(Q14), i(Q15) and i(Q16)' This algorithm backtracks on the placement of queens on
the chessboard and uses the dihedral group of chessboard symmetries to reject par­
tial solutions that have already been considered earlier in the search. This algorithm
can be adapted to solve the queens domination problem for some values of n.

257

3.2 Backtracking Based on Unattacked Squares

Rather than backtracking on queen placements, an improvement is to systematically
identify undominated squares and to try placing pieces in all positions that attack
these squares. For example in Figure 2 two queens have already been placed, and the
placement of a third is being considered. An undominated square has been located
at X and squares adjacent to X have been marked with an o. The third queen will
now be tried systematically in all 0 squares as well as the X square.

Q 0 0

0 0

0 Q 0 0

0 0 0

0 0 X 0 0 0 0 0

0 0 0

0 0 0

0 0

Figure 2: The undominated square X has been selected, and the third queen will be
tried in each of the locations marked 0, which are adjacent to X.

At each stage during the execution of the algorithm, we must decide on which of
the many undominated squares to focus the search. The naive method of taking the
first such square in order performs quite well. However, the breadth of the search tree
is more constrained if we take that square with the least number of options available
to place the attacking piece. There is a tradeoff involving the cost of finding this
square. In practice it is best to search for the best square early on in the search,
but to simply take the first uncovered square in the latter part of the search. The
performance of this method is better than that of the first method, but not to the
extent that any new results could be found. However, it forms the basis for an
improved method which is described now.

3.3 Backtracking Based on Intersecting Sets of Squares

Instead of backtracking based on the positions of the queens, this method backtracks
based on the set of queens attacking a given position. Consider first the case of
placing the first queen. We select the first uncovered square x and assign to this
queen the list N(x) of squares that attack this position. We now select the next
uncovered square y and investigate separately whether this is to be covered by the
first queen or a second (as yet unused) queen. We first investigate the case where
the first queen is to cover y. In this case its associated list of squares must be
reduced to N(x) n N(y). In the case that N(x) n N(y) = 0 we cannot cover the
first and second squares simultaneously using the first queen, and therefore must use

258

the second. Otherwise the first queen can cover both squares, and the procedure is
recursively called to investigate coverage of the next uncovered square. In the case
that IN(x) n N(y)1 = 1, the first queen is fixed and all squares in its neighbourhood
are recorded as being covered. Note that squares are not considered covered until
they are attacked by a fixed queen.

More generally, at each level of the backtracking search, the following steps must
be taken. First, the next uncovered square must be found. Then each unfixed queen
is considered in turn with its associated list of positions reduced so that it covers this
new square as well as previously assigned ones. If its list becomes empty, then we
cease consideration of this queen and move on to the next. Otherwise we recursively
call the procedure to investigate coverage of the next uncovered square. Again we
record squares attacked by this queen if it becomes fixed. After all pieces have been
considered, we then try dominating the latest square with an as yet unused queen.

Applying this algorithm yielded some already known solutions, but with signifi­
cantly longer times than those of either of the two previous algorithms when solving
the queens domination problem. However, applying the method only for the place­
ment of the last piece always gave a significant improvement in the execution time.
We now discuss a number of enhancements that can be applied to any of the three
algorithms and finally a combined method that produces significant speed improve­
ments.

3.4 Enhancements

Two simple methods were developed for quickly deciding whether to extend from
the current partial solution. The first check is for a queen that covers no squares not
covered by another queen. If such a queen exists, and we are searching for only a
solution with a minimal number of queens, then this partial solution will obviously
not lead to it, and the algorithm can backtrack.

For example, in Figure 3 the fourth placed queen, Q4, has created a configuration
where the first queen (Q1) no longer attacks a unique square and is therefore redun­
dant. The algorithm can immediately consider the next placement of the fourth
queen.

Q1 Q3

Q2 Q4

Figure 3: The placement of Q4 causes Ql to no longer be necessary.

The next check is whether there are enough remaining queens to cover the remain-

259

ing uncovered squares. For an n x n chessboard a queen can attack at most 4n - 3
different squares including the one it is placed on. A second queen can attack fewer
new squares than this as many of the squares attacked by it are already attacked by
the first queen. By using the backtracking methods already presented, we can build
a table with the maximum number of new squares that can be attacked for any given
number of queens for a fixed size board. If the number of remaining squares to be
covered is greater than the maximum than can be covered by the remaining number
of queens, then we can backtrack.

Note that actually building up a list of the maximum number of squares that
can be dominated for any number of pieces up to the domination number would
require as much work as solving the problem itself. Therefore in practice the number
of squares dominated by up to half this number is initially computed, with this
information being used for placing the second half of the pieces.

3.5 Combining the Methods

The best method was obtained by applying the enhancements of the previous section
to a combination of the three backtracking methods. In particular, optimal perfor­
mance was achieved by placing the first queen using the first algorithm, placing all
but the last 2 or 3 queens using the second algorithm, and placing the remaining 2
or 3 queens using the final method. The optimal number of queens to place using
the last method increases with the overall number of queens being placed.

3.6 Isomorph Rejection

Isomorph rejection cannot be easily applied to the unattacked squares method, so
once the algorithm switches to this method, isomorph rejection is no longer applied.
However, a count of the number of non-isomorphic solutions can still be found by
rejecting complete solutions found that are not the first in their isomorphism class.

3.7 Results Obtained

The results of the combined methods are listed in Table 4 (with previously unknown
results in bold). In particular we showed that 'Y(Q14) = 8 by finding no dominating
sets with 7 queens, and that 'Y(Q15) = ,(Q16) = 9 by finding no dominating sets
with 8 queens. Additionally, we confirmed the already known results of ,(Q17) =
,(QlS) = 9.

The algorithm can be easily modified to handle the case of the independent queens
domination problem by adding the restriction that a queen cannot be placed in a
location that attacks another queen. This restriction greatly speeds up the algorithm,
and enabled us to show that i(Q18) = 10. Also by finding no independent dominating
set of 9 queens on a 19 by 19 board we improved the previously known bound of
9::; i(Q19) ::; 11 to 10 ::; i(Q19) ::; 11.

This last result leads to one further result for the queens domination problem.
Weakley [28] has proved a theorem which includes the result that ifR is a dominating

260

set of (n - 1)/2 squares of Qn, then R is independent. It follows from this that if
i(Qn) > n;l then ,(Qn) > n;l. The result that i(Q19) > 9 implies that ,(QI9) > 9.
Since it is already known that ,(QI9) S 10 it follows that ,(QI9) = 10.

Queens Domination
Board size Number of Queens Number of Non- Time

Isomorphic Solutions
3 1 1 -
4 2 3 -
5 3 37 -
6 3 1 -
7 4 13 -
8 5 638 1.1 sees
9 5 21 0.4 sees
10 5 1 0.7 sees
11 5 1 1.2 sees
12 6 1 34 sees
13 7 41 18 mins
14 7 0 32 minutes
14 8 588 11 hours
15 8 0 21 hours
15 9 25872 230 hours
16 8 0 31 hours
17 8 0 30 hours
18 8 0 43 hours

Independent Queens Domination
Board size Number of Queens Number of Non- Time

Isomorphic Solutions
3 ·1 1 -
4 3 2 -
5 3 2 -
6 4 17 -
7 4 1 -
8 5 91 -
9 5 1 -
10 5 1 -
11 5 1 0.2 sees
12 7 105 34 sees
13 7 4 45 sees
14 8 55 9.4 mins
15 9 1314 110 mins
16 9 16 5 hours
17 9 2 11 hours
18 9 0 28 hours
18 10 28 120 hours
19 9 0 62 hours

Table 4: Running times for the enhanced backtracking algorithm solving the queens
and independent queens domination problems.

261

In addition to establishing these domination and independent domination num­
bers, we calculated the number of non-isomorphic minimum dominating and inde­
pendent dominating sets in the queens' graph for n :::; 15 and n :::; 18 respectively.
The results are shown in Table 4. Sample minimum or best-known dominating and
independent dominating sets for n ~ 25 and n ~ 22 respectively are listed in the
Appendix (in Tables 11 and 12 respectively). Note that the dominating set of 12
queens on a 23 by 23 board and the independent dominating set of 12 queens on a
22 by 22 board reduces the known upper bounds for each of these cases by 1.

4 Reductions

In this section we present a reduction method which is suitable for solving a variety
of constraint satisfaction problems. The method is particularly well suited to the
kings upper irredundance problem. It is also applied to the queens upper and lower
irredundance problems to produce some new results.

Suppose we have a partial configuration and are considering all possible extensions
to see whether any of them form a complete solution. In addition suppose that for
any such extension that forms a complete solution, one of the pieces in the partial
solution can be moved to another location and the solution preserved. Then there is
no point in continuing the search from this partial configuration if the other partial
configuration found by moving the piece has already been or will be searched.

Specifically, assume a partial solution (XI, X2, ... , Xk) to a problem with solution
space (Xl, X 2, ... , Xn) with k < n is being considered. If (Xl,X2, ... ,Xk, Xk+l,",Xn) be­
ing a solution implies that (Yl, Y2, ... , Yk, Xk+1, ... , xn) is also a solution, then
(Xl, X2, ... , Xk) need not be extended if all extensions to (y!, Y2, ... , Yk) have been or
will be searched. If such a condition holds, we say that (Xl, X2, ... , Xk) reduces to
(YI, Y2, ... , Yk). This is a particularly powerful technique if a large proportion of par­
tial solutions are reducible, as is the case with the kings upper irredundance problem.

4.1 Examples

We demonstrate the technique with four simple examples for the kings upper ir­
redundance problem which involves producing a configuration of as many kings as
possible such that every king has at least one private neighbour. A private neighbour
is a square attacked by a unique king, and can include the square the king itself is
on. The four examples lead to a result (Theorem 1) considerably restricting the ini­
tial configurations that need to be examined in a backtracking search for maximum
irredundant sets of kings. In these examples we assume that we are performing a
backtrack search of the board proceeding column-wise from the top left corner.

4.1.1 Example 1

Consider the example in Figure 4. Here a king is being considered for placement near
the top-left corner. Three other squares are marked with an X (prohibited) because

262

x~ x
K x f'..K

Figure 4: The king at position (1,1) could move to position (0,0).

if a king were placed in any of these three squares then it would have no private
neighbour. Because of these restrictions, no matter how the solution is extended,
the king already placed is guaranteed to have a private neighbour in the top-left
corner. Now observe that if there were a solution involving a king in this position,
then it could be moved to the top-left square and this would still be a solution. That
is, the partial solution with a king in position (1,1) reduces to the partial solution
with a king in position (0,0). This is an attractive reduction, since the king in
position (0,0) attacks fewer squares, thereby leaving more squares available to be
private neighbours of other kings. A consequence of this is that there is no need
to search for a maximal irredundant configuration of kings with one in the original
position, so before beginning such a search, this square can be immediately ruled
out from containing a king. As we shall form other examples, further attractive
reductions can be achieved by moving kings to a side of the board.

We can express this sequence of logical conclusions in the following way.

The board is initially:

If a king were at position (1,1)
then the pOSitions (0,0), (0,1), (1,0) would be prohibited,
and the board becomes:

ffifr ffif
The king at (1,1) could be moved to (0,0).

So a king should not be at position (1,1) and the board becomes:

This demonstrates that starting from a board about which no decisions have so
far been made we can conclude that there should be no piece in position (1,1). Note

263

that a square S is listed as prohibited either because a king placed in S would have
no private neighbours, or because a king in S would cause some already placed king
to have no private neighbours.

4.1.2 Example 2

Consider the logic of another example.

The board is initially:

The positions (0,0), (1,1) would be prohibited, resulting in the board:

• If position (1,0) were prohibited then the board becomes:

Kx

• and the king at (0,1) could be moved to (0,0).
So position (1,0) should contain a king, resulting in the board:

Kx

-The following positions are prohibited because either of the already
placed kings would have no private neighbour:

(2,0), (2,1), (3,0), (3,1), (0,2), (0,3), (1,2), (1,3)
As a result the board becomes:

xK x x
Kx x x
x x
x x

If a king were at position (4,1)
then position (4,0) would be prohibited, resulting in the board:

264

xK x x x
K x x xK
x x
x x

The king at (4,1) could be moved to (4,0).
So there can be no king at position (4,1).
By symmetry there can be no king at position (1,4), resulting in the
board:

xK x x
K x x x x
x x
x x

x

Thus by placing a king at position (0,1), we can conclude that there must also
be a king at (1,0) and that 12 other squares cannot contain kings.

4.1.3 Example 3

Consider the starting configuration of

Positions (1,1) and (1,2) would be prohibited so the board becomes:

tfuEE
fKR=F

If a king were at position (1,0) then the board becomes:

Mt
K

x x
Kx

The king at (1,0) could be moved to (0,0).
But extensions of this configuration have already been considered.

So there can be no king at (1,0), and the board becomes:

•

x
x x
Kx

If a king were at position (2,1) then it could be moved to (2,0).
So position (2,1) is prohibited, and the board becomes:

~
x

x x x
Kx

265

If position (2,0) is prohibited then the king at (0,2) could be moved
to (0,0). Thus there must be a king at (2,0), resulting in the board:

_

x K
x x x
Kx

4.1.4 Example 4

Consider the following partial solution:

As in Example 3 the squares (1,1) and (1,0) are prohibited,
and the board becomes:

x x
x mx

If a king were at position (1,2)
then the board becomes:

~
x

x x
xK

The king at (1,2) could be moved to (0,2),
which has been considered previously.

So there can be no king at position (1,2)
and the board becomes:

x x
x x

•

x

If a king were at position (2,0)
the position (2,1) would be prohibited, resulting in the board:

mXK
x x x
x x

266

and the king at (2.0) could be moved to (0.0)
So there can be no king at position (2.0).
Similarly there can be no king at position (2,1) or (2,2).
So the board becomes:

x x x
x x x
x x x

Any extension of the above partial solution cannot form a maximum solution as
an extra king can be added at position (0,0).

4.1.5 Conclusions From Examples

The above four examples establish the following result:

Theorem 1 In a backtrack search from the top left corner for a maximum irredun­
dant configuration of kings, we only need to consider the following three configurations
in this corner:

1. A king at position (0,0), with the squares (1,0), (1,1), and (0,1) prohibited.

2. Kings at positions (0,1) and (1,0), with the squares (0,0), (2,0), (3,0), (1,1),
(2,1), (3,1), (4,1), (0,2), (0,3), (1,2), (1,3), and (1,4) prohibited.

3. Kings at positions (0,2) and (2,0), with the squares (0,0), (1,0), (0,1), (1,1),
(2,1), and (1,2) prohibited.

By symmetry a similar situation arises in all four corners of the board if it is
large enough, and such information greatly speeds up any backtracking search for a
solution to the problem.

4.2 The Reduction Algorithm

The conclusions drawn from the previous section are only examples of what can be
deduced from similar situations throughout the backtrack search. We describe how
this logic is applied systematically during the search.

The algorithm is given a board size, n, and a number of pieces, k, and proceeds to
search for a placement of the k pieces such that every piece has at least one private
neighbour. If we find such a case, then we can conclude that the upper irredundance
number is at least k. If cannot find such a placement, then we can conclude that the
upper irredundance number is strictly less than k, since any subset of an irredundant
set is also irredundant.

Each piece is placed so that it and all existing pieces still have at least one private
neighbour. During the search we maintain a list of pieces attacking each square and
the number of private neighbours of each piece. The current usage of each square
(in terms of piece placement) is recorded as either unused, occupied or prohibited. In

267

addition to knowing the number of pieces attacking each square, it is useful to know
whether this can possibly change deeper within the search. The attacked status of
each square S is recorded as unattacked if no pieces currently attack S, attacked if at
least two pieces attack S, guaranteed unattacked if all squares in the neighbourhood of
S are prohibited, a private neighbour of some piece, or a guaranteed private neighbour
if S is a private neighbour of some piece and has all squares in its own neighbourhood
either used or prohibited.

Given a partial configuration we must investigate whether we can move a piece to
create a reduced configuration. In applying this check the conditions that must hold
for a piece to allowed to move from one square to another are as follows. Firstly,
it must either still attack a guaranteed private neighbour from the new position,
or alternatively still attack all the original private neighbours. Secondly, it cannot
attack any additional squares that could be private neighbours of some other piece
ei ther now or deeper in the search, unless the other piece is guaranteed to have a
private neighbour elsewhere. These additional squares are referred to as disallowed
squares. We need to be sure that, if we have ruled out an extension based on moving
a piece to another location, then a later solution with the piece at this new location
will not be rejected because it could move back to the old position. This is ensured
by checking that the number of disallowed squares which are attacked is smaller in
the position moved to. If this is true at some point within the search, then deeper
within the search it will not be possible to move a piece back because no squares ever
change state from being allowed to disallowed further down the backtracking tree.

Each current state of the board is analysed to determine if a move for any piece
is possible. The algorithm also checks for cases where a new piece could be added to
the board at no cost to the current partial configuration. Such cases arise when there
exists a prohibited square for which all adjacent squares are either attacked by at
least two pieces or are guaranteed to be unattacked so that it will not interfere with
any existing or future pieces. Also at least one of these squares should be guaranteed
to be unattacked so that the new piece has at least one private neighbour itself.

In order to be able to make the logical deductions presented earlier, a form of
forward checking is required. A simple case involves checking to see if a piece can be
placed in each possible position, and if not prohibiting that square. We must also
check to see whether the current partial solution should be extended. If so we must
prohibit any square that would result in a reduction being possible if it contained
a piece. Additionally, if we detect that a piece must be placed in a certain square
then we must call the recursive backtrack procedure to search the remaining solution
space.

As with the algorithm for the queens domination, isomorph rejection is easily
incorporated into this algorithm. That is, at any stage where a square x is prohibited,
if the current board configuration maps to itself under some transformation T, then
the square that x maps to under T is also prohibited.

A more detailed description of the reduction algorithm is given in [21].

268

4.3 Results

The described algorithm obtained the following new results for the kings upper ir­
redundance problem: IR(Ks) = 17, IR(Kg) = 25, IR(KlO) = 27, and IR(Kl1) = 36.
Maximal irredundant configurations of the given sizes were already known to exist,
but this program determined that no larger cases exist. Some performance figures for
the algorithm are given in Table 5. Sample maximum irredundant sets are displayed
in Table 13 in the Appendix.

Board size N umber of Kings Solution Found Time
6 9 Yes 0.2 sees
6 10 No 0.3 sees
7 16 Yes 1.6 sees
7 17 No 2.1 sees
8 17 Yes 60 sees
8 18 No 59 sees
9 25 Yes 25 mins
9 26 No 9 mins
10 27 Yes 8.4 hours
10 28 No 9.2 hours
11 37 No 140 hours

Table 5: Running times for backtracking algorithm solving the kings upper irredun­
dance problem.

4.4 Queens Lower Irredundance

This problem involves finding a minimal placement of queens on a chessboard so that
every queen is irredundant, and so that no more irredundant queens can be added to
the board while maintaining the property that all queens are irredundant. Currently
there is no known case for which ir(Qn) < 'Y(Qn), and to date only the first four
values for ir(Qn) have been published. To find if there does exist a configuration in
which ir(Qn) < l'(Qn) we must search an n x n board for maximal irredundant sets
of sizes between 1 and 'Y(Qn) - 1.

The algorithm was run with a number of queens ranging from 1 up to 1 less than
the domination number for boards up to size 13 x 13. In all cases no solution was
found, thereby indicating that ir(Qn) = 1'(Qn) for 1 ~ n ~ 13. The running times
are given in Table 6.

4.5 Queens Upper Irredundance

The reduction techniques developed for the kings' graph were also applied to the
queens' graph. However the algorithm is far less suited to the queens graph with
the results being not nearly as good. In fact the reduction part of the backtracking
algorithm was found to slow down the algorithm, with the best results being found
with the reduction part removed. The algorithm does run fast enough to find the
previously unknown values of IR(Qg) = 13 and IR(QlO) = 15. These are in fact

269

Board size Number of Queens Solution Found Time
5 2 No -
6 2 No -
7 3 No -
8 4 No 1 see
9 4 No 3 sees
10 4 No 9 sees
11 4 No 21 sees
12 5 No 22 mins
13 6 No 26 hours

Table 6: Running times for backtracking algorithm solving the queens lower irredun­
dance problem.

equal to Weakley's lower bound of r(Qn) ~ 2n - 5. Since IR(Qn) ~ f(Qn) this
additionally implies that f(Qg) = 13 and f(QlO) = 15. The running times for these
and a number of other cases are given in Table 7. Sample maximum irredundant
sets are displayed in Table 14 in the Appendix.

Board size N umber of Queens Solution Found Time
6 7 Yes 0.4 sees
6 8 No 0.2 sees
7 9 Yes 7.3 sees
7 10 No 2.9 sees
8 11 Yes 1 see
8 12 No 84 sees
9 13 Yes 2 hours
9 14 No 1 hour
10 15 Yes 40 hours
10 16 No 46 hours

Table 7: Running times for backtracking algorithm solving the queens upper irre­
dundance problem.

5 Probabilistic Methods

Probabilistic methods have the advantage of being able to generate chessboard con­
figurations of much greater sizes than can be generated by exhaustive search. On the
other hand they cannot establish nonexistence of a configuration with the required
properties, or to enumerate all such configurations. In this section we describe the
use of a simple local search technique which was used to establish the new result that
i(Q22) :::; 12 by finding an independent dominating configuration of 12 queens on a
22 by 22 board. Previously it has been proven that 'Y(Q4k+1) = 2k + 1 for all k :::; 15
by exhibiting dominating sets of this size. This is extended here to prove that the
result holds for k :::; 21.

270

5.1 Local search

Local search techniques operate within a set ~ of feasible solutions. Associated with
each i E L: is a cost c(i), and the task is to find an optimal solution with overall
minimum cost. In the problems of this section an optimal solution has cost O. For
each i E ~ we define a set Ti of transformations each of which can be used to change
i into a closely related feasible solution j. The set of solutions that can be reached
from i by applying a transformation from 1i is called the neighbourhood D(i) of i.

The simplest local search is simply a random walk, starting with an arbitrary
starting feasible solution and successively moving to a neighbouring feasible solution.
The chosen neigbouring solution is selected from a small set of neighbours, and is the
one with the lowest cost. The walk finishes successfully when an optimal solution is
found, or unsuccessfully when an upper limit of transformations is reached.

The algorithm is as follows:

Procedure RandomSearch(x, searchSize, stopThreshold)
{ x a random starting configuration. }
{ searchSize is the number of neighbours generated from the current solution. }

repeat stopThreshold times
bestC ost = 00

repeat searchSize times
y = transform(x) { Generate a random element in D(x) }
if C ost(y) = 0 then

return y { y is a solution }
if Cost(y) < bestCost then

bestCost = Cost(y)
best Solution = y

x = bestSolution
endProcedure

This algorithm was adapted to the queens domination problem using the following
Transform procedure:

Procedure Transform(x)
{ Returns a random transformation from x to a new configuration. }
{ x is a set of ordered pairs (i, j) indicating that queen i is placed in square j }

Select a random pair (i, j) E x
Y = x \ {(i,j)}
Select a random undominated square a from y
Select a random square b E D(a)
return y U {(i, b)}

endProcedure

Despite its simplicity, this method, using searchSize = 20, quickly found solutions
of size ')'(Qn) for all n :::; 18. We noted that the majority of solutions found in this way
had queens only on even-even squares (i.e. squares (i,j) where i,j == 0 (mod 2)).

271

Modifying the previous algorithm to search only for solutions with queens on even­
even squares we were able to find optimal solutions for boards from sizes 12 to 25,
including Johannes Waldmann's dominating configuration ([26]) of 12 queens on a
23 x 23 board (see Figure 5). The average running times of this algorithm over a
number of trials are given in Table 8.

Q
Q

Q

Q

Q IQ
Q

Q
Q

Q
Q

Q

Q
Q

Q

Q
Q

Q

Q
Q

Q

Q

Q
Q

Figure 5: A dominating configuration of 12 queens on a 23 by 23 board and an
independent dominating configuration of 12 queens on a 22 by 22 board.

Queens Domination
Board size Number of Queens Search Size A verage Time
12 6 10 0.01 sees
13 7 10 0.07 sees
14 8 11 0.05 sees
15 9 11 0.03 sees
16 9 12 0.16 sees
17 9 13 1.1 sees
18 9 14 9.4 sees
19 10 17 12 sees
20 11 19 2.7 sees
21 11 20 35 sees
22 12 20 22 sees
23 12 20 28 mins
24 13 20 99 sees
25 13 20 27 mins

Table 8: Running times for the probabilistic algorithm solving the queens domination
problem.

A similar transformation was used for the queens independent domination prob­
lem, but since most solutions to this problem do not have queens on only even-even
squares, this restriction was dropped. This algorithm generated the new result of an
independent dominating configuration of 12 queens on a 22 x 22 board (see Figure 5).

272

The algorithm was tested on boards up to 22 by 22, and the results of this are given
in Table 9.

Queens Independent Domination
Board size N umber of Queens Search Size Average Time
12 7 11 0.3 sees
13 7 12 11 sees
14 8 14 5 sees
15 9 17 2 sees
16 9 22 17 sees
17 9 22 56 mins
18 10 22 27 mins
19 11 22 101 sees
20 11 22 16 mins
21 11 22 7 hours
22 12 22 4 hours

Table 9: Running times for the probabilistic algorithm solving the independent
queens domination problem.

5.2 Domination in Q4k+l

Weakley [28] has shown that 1'(Q4k+d ;::: 2k+1 for all integers k, and has conjectured
that I'(Q4k+1) = 2k + 1 for all integers k. This conjecture has been confirmed for all
k :=; 15 and for k = 17,19 by generating dominating sets of size 2k + 1 (see Weakley
[28] for k :=; 6 and k = 8, Burger, Cockayne and Mynhardt [3J for k = 9,12,13,15,
Gibbons and Webb [16] for k = 7,10,11,14, and Burger and Mynhardt [6] for k =
17,19).

In this section we adapt the above local search algorithm to find independent
dominating sets of size 2k + 1 for k :=; 21.

The method used in [16J to generate dominating sets of size 2k + 1 was that of
simulated annealing. In this paper it was noted that many dominating sets contain
queens only on even-even squares. For example see the dominating set for k = 3
in Figure 6. In order to check whether such a configuration is dominating, it is
necessary to only check that the odd-odd squares are attacked since all others are
attacked by a queen in either the same row or column. This leads to a compressed
representation of the board where even rows and columns are represented as lines
and odd-odd squares form the squares in the compressed representation. Queens
are now placed on the intersections of the lines, with one queen per line. Figure 7
shows the compressed board of Figure 6. In this representation all squares must be
dominated diagonally by some queen.

An initial configuration for the simulated annealing algorithm was generated by
randomly placing the 2k + 1 queens with one per row and column of the compressed
board. The cost of a configuration of queens was the number of undominated squares.
The transformation method was to choose two random queens at positions (Xl,Yl)
and (X2,Y2) and move them to positions (Xl,Y2) and (x2,yd. This preserves the

273

o

1

2

3

4

5

6

7

8

9

10

11

12

o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6: A 13 x 13 board (k=3) dominated by 7 queens. Odd-odd squares are
shaded.

one queen per row and column constraint, and allows for the new configuration to
possibly dominate different squares along the diagonals.

By observing the dominating configurations found on boards of size 4k + 1 inter­
esting patterns emerge. When looking at the compressed board representation for
large boards, it was noted that apart from the edges and the centre of the board,
only every second diagonal was occupied in most cases. In fact the board could be
dominated if only every second diagonal were occupied as illustrated in Figure 8(a)
for the case of k = 4. The board could also be dominated by omitting some number
of corner diagonals and including more centre diagonals. In general this is denoted
as an X/Y set of diagonals, where X (resp. Y) down (resp. up) diagonals have been
removed from each of the two appropriate corners and X (resp. Y) pairs of up (resp.
down) diagonals added to the centre. Figure 8 gives examples of 0/0, 0/1, 1/1, and
1/2 sets of diagonals for k = 4.

These diagonals can be specified formally by first numbering the diagonals. Let
the squares be numbered from 0 to 2k - 1 across and down the board. Then the
down diagonal passing through square (x, y) is numbered 2k + x - y and the up
diagonal is numbered x + y + 1.

An X/Y dominating set of diagonals then consists of

274

°
1

2

3

4

5

6

° 1 2 3 4 5 6

•• ,..'"
•• ,...,

•• ,..'"
•• .. .,

•• .. .,
~.

.... '"
~.
.... .,

Figure 7: A compressed representation of Figure 6.

• Down Diagonals

(2 + 2X), (2 + 2X) + 2, ,." (4k - 2 - 2X) - 2, (4k - 2 - 2X)

(2k + 1 - 2Y), (2k + 1 - 2Y) + 2, .. " (2k - 1 + 2Y) - 2, (2k - 1 + 2Y)

• Up Diagonals

(2 + 2Y), (2 + 2Y) + 2, .. " (4k - 2 - 2Y) - 2, (4k - 2 - 2Y)

(2k + 1 - 2~), (2k + 1 - 2X) + 2, .. " (2k - 1 + 2X) - 2, (2k - 1 + 2X)

These cases all use mostly even numbered diagonals and are referred to as an
even diagonal set, It is also possible to dominate the board with an odd diagonal
set, which consists mostly odd numbered diagonals, These are

• Down Diagonals

(1 + 2X), (1 + 2X) + 2, ... , (4k - 1 - 2X) - 2, (4k - 1 - 2X)

(2k + 2 - 2Y), (2k + 2 - 2Y) + 2, .. " (2k - 2 + 2Y) - 2, (2k - 2 + 2Y)

• Up Diagonals

(1 + 2Y), (1 + 2Y) + 2, .. " (4k - 1 - 2Y) - 2, (4k - 1 - 2Y)

(2k + 2 - 2X), (2k + 2 - 2X) + 2, .. " (2k - 2 + 2X) - 2, (2k - 2 + 2X)

In order for the board to be dominated, there must still be one queen on each
vertical and horizontal line and at least one queen occupying each of the specified
diagonals, If even cases are restricted to X and Y being less than k, and odd cases
are restricted to X and Y being less than k + 1 and not equal to 0, then there are a
total of 2k - 1 - 2X + 2Y down diagonals and 2k - 1 - 2Y + 2X up diagonals. There
are at most 2k + 1 queens, so at most 2k + 1 diagonals of each type can be occupied,
which leads to the constraint that IX - YI ~ 1. Furthermore, the total number of
diagonals required overall is 4k - 2 which is 4 less than the maximum that could be

275

attacked by 2k + 1 queens, so in any solution there will be 4 spare diagonals. These
could take the form of multiple queens attacking the same diagonal, or redundant
diagonals being attacked. Also note that an even X/Y configuration is the same as
an odd (k - Y)/(k - X) configuration, hence only cases where either X or Y ::; ~
need be considered.

Such diagonal patterns have been studied in [3} and [6], albeit under a different
notation. In these papers the authors consider properties of so-called symmetric
dominating sets in which a queen in position (k - i, k - j) implies a queen in position
(k + i, k + j). In this paper solutions found are more general. We simply perform a
local search for configurations containing a queen in each row and column such that
one of these diagonal configurations is dominated. A prescribed set of diagonals is
initially chosen, and the transformation of Gibbons and Webb's simulated annealing
algorithm is used. The cost of a configuration is much more easily computed as
the number of specified diagonals that are not occupied, rather than the number of
undominated squares.

Both even-diagonal and odd-diagonal sets for a range of X/Y values were tested
for all values of k up to 23. For all cases with k ::; 20 at least one even solution, and
with k ::;; 21 at least one odd solution was found.

The types of solutions found are given in Table 15 in the Appendix. Sample
solutions for even cases can be found in Table 16 and odd cases in Table 17, where
the nth element in a solution is the row in which the queen in the nth column is
placed. An image of the compressed board for a solution with k = 20 can be seen in
Figure 9.

5.3 Further Observations

For all even cases up to k=20 and odd cases up to k=21, an X/(X+1) solution was
always found. Furthermore, X increased by 1 for approximately every 4 values of k
once k became large enough. Continuing with this pattern, it would be expected that
for k=21 to 24, even 4/5 solutions would exist, and for k=22 to 25, odd 5/6 solutions
would exist. The algorithm was run extensively on these and other cases with running
times totaling several weeks, but no further results emerged for odd cases higher than
k=21 or even cases higher than k=20. This could be due to the general increased
running time the algorithm requires with moving to higher X/ (X + 1) solutions.

It is also seen that for even X/(X+l) configurations, all but 2X + 2 queens lie on
even/even or odd/odd squares. Furthermore, 2X of these must lie within the central
rectangle that occupies the intersection central odd diagonals. Similarly, for odd
X/ (X + 1) configurations, all but 2X + 1 queens lie on even/odd or odd/even squares,
and 2X - 1 of these must lie in the central even diagonal intersection region. This
information could be made use of in the form of a more restricted search space, but
attempts to do so have so far been unsuccessful.

276

(a) A % set of dominating diagonals. (b) A 1/0 set of dominating diagonals.
8"

(c) A 1/1 set of dominating diagonals. (d) A 2/1 set of dominating diagonals.

Figure 8: These compressed representations of 17 x 17 boards (k = 4) are dominated
by four different sets of numbered diagonals.

277

Figure 9: An even 3/4 dominating set for k=20. This corresponds to a set of 41
queens dominating an 81 x 81 board, proving that ,(Qsd = 41. Note the pair
of queens on down diagonals 22 and 30, and also coverage of the redundant down
diagonals 51 and 57.

278

6 Concluding Remarks

We have presented a number of computational search techniques that have been
applied to various chessboard domination problems. These have been successful in
generating new dominating configurations on n x n chessboards, for small values of
n. For example, new optimal dominating and independent dominating sets of queens
have been found to produce an updated set of known values for ')'(Qn) and i(Qn) in
Table 10.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
')'(Qn) 1 1 1 2 3 3 4 5 5 5 5 6 7 8 9
i(Qn) 1 1 1 3 3 4 4 5 5 5 5 7 7 8 9

n 16 17 18 19 20 21 22 23 24 25
')'(Qn) 9 9 9 10 ::;11 11 ::; 12 ::; 12 ::; 13 13
i(Qn) 9 9 10 ::; 11 ::;11 11 ::; 12 ::; 13 ::; 13 13

Table 10: Known values for 'Y(Qn) and i(Qn). Bold values are new results from this
paper.

We believe that methods such as the reduction technique could be successfully
applied to other chessboard and combinatorial problems.

We have shown that ir(Qn) = 'Y(Qn) for n ::; 13. Although it is possible for
some n that ir(Qn) < "Y(Qn) no such case has yet been found. By examining the
difference between the theoretical lower bound of 'Y(Qn) 2:: n;-l and the actual value
of "Y(Qn) it is found that for known values this is maximal at n = 15, where the
difference is 2. This indicates that Q15 could be a likely candidate for a situation
where ir(Qn) < "Y(Qn) is true. Improvements to the algorithm used in this paper
may allow a search for such a case.

The probabilistic algorithm developed here to establish that 'Y(Q4k+1) = 2k + 1
for 16 ::; k ::; 21 was very successful. However the transformation method used was
rather simplistic and if improved upon further solutions may be found. There are
also additional patterns of solutions that were not taken advantage of during the
search.

In conclusion we believe that computational techniques such as the ones described
can help shed light on many of the remaining open chessboard problems listed in [14]
and [18].

7 Acknowledgment

We appreciate the anonymous referee's help in improving the presentation of this
paper.

279

Appendix

n k Minimum? Co-ordinates of a dominating set of k queens on an n x n chessboard
4 2 Yes (1,1) (1,2)
5 3 Yes (2,2) (3,0) (4,1)
6 3 Yes (0,5) (2,1) (4,3)
7 4 Yes (1,2) (1,5) (4,0) (6,3)
8 5 Yes (0,1) (3,3) (4,4) (5,4) (7,0)
9 5 Yes (2,2) (3,6) (6,1) (7,5) (8,0)
10 5 Yes (1,7) (3,1) (5,5) (7,9) (9,3)
11 5 Yes (1,3) (3,9) (5,5) (7,1) (9,7)
12 6 Yes (0,0) (2,8) (4,2) (6,6) (8,10) (10,4)
13 7 Yes (0,8) (2,4) (4,0) (6,10) (8,6) (10,2) (12,12)
14 8 Yes (0,2) (2,10) (4,6) (6,0) (6,12) (8,8) (10,4) (12,10)
15 9 Yes (0,0) (2,4) (4,10) (6,14) (8,12) (10,2) (10,6) (12,10) (14,8)
16 9 Yes (0,8) (2,14) (4,2) (6,6) (8,12) (10,12) (12,0) (12,4) (14,10)
17 9 Yes (0,2) (2,4) (4,10) (6,16) (8,8) (10,0) (12,6) (14,12) (16,14)
18 9 Yes (0,2) (2,14) (4,4) (6,10) (8,16) (10,8) (12,0) (14,6) (16,12)
19 10 Yes (0,0) (2,6) (4,12) (6,18) (8,10) (10,2) (12,8) (14,14) (16,4) (18,16)
20 l1 Yes (0,8) (2,0) (4,16) (6,6) (8,10) (10,14) (12,4) (14,2) (14,18) (16,12) (18,4)
21 l1 Yes (0,10) (2,16) (4,2) (6,6) (8,20) (10,12) (12,18) (14,0) (16,4) (18,8) (20,14)
22 12 ? (0,2) (2,20) (4,10) (6,6) (8,16) (1O,8) (12,4) (12,14) (14,18) (16,12) (18,12) (20,0)
23 12 ? (0,8) (2,2) (4,16) (6,22) (8,4) (10,12) (12,10) (14,18) (16,0) (18,6) (20,20) (22,14)
24 13 ? (0,16) (2,4) (4,8) (6,2) (8,12) (10,18) (10,22) (12,10) (14,12) (16,0) (18,6) (20,20) (22,14)

Table 11: Sample minimum or best-known dominating sets for Qn.

n k Minimum? Co-ordinates of an independent dominating set of k queens on an n X n chessboard
4 3 Yes (0,0) (1,2) (3,1)
5 3 Yes (1,2) (2,4) (4,0)
6 4 Yes (0,2) (2,5) (3,1) (5,4)
7 4 Yes (1,1) (2,4) (5,0) (6,3)
8 5 Yes (0,2) (2,5) (3,0) (5,3) (6,7)
9 5 Yes (0,0) (1,5) (2,1) (5,6) (6,2)
10 5 Yes (1,2) (3,8) (5,4) (7,0) (9,6)
11 5 Yes (1,7) (3,1) (5,5) (7,9) (9,3)
12 7 Yes (0,6) (1,1) (2,11) (5,4) (7,8) (8,0) (9,7)
13 7 Yes (0,4) (2,10) (4,2) (6,8) (8,0) (10,6) (12,12)
14 8 Yes (0,1) (4,10) (5,7) (6,9) (7,6) (8,8) (9,0) (13,5)
15 9 Yes (1,11) (3,1) (5,6) (6,9) (7,7) (8,10) (9,8) (10,3) (11,5)
16 9 Yes (3,10) (4,7) (5,9) (6,6) (7,8) (8,0) (13,15) (14,5) (15,14)
17 9 Yes (1,11) (3,3) (5,13) (6,8) (7,1) (9,7) (11,15) (13,9) (15,5)
18 10 Yes (3,6) (4,4) (5,10) (6,8) (7,11) (8,5) (9,7) (10,9) (11,12) (17,0)
19 11 ? (0,17) (1,0) (2,18) (3,1) (8,10) (9,2) (10,11) (11,8) (12,12) (13,9) (18,5)
20 11 ? (1,7) (3,19) (4,14) (5,9) (7,5) (9,17) (11,13) (13,3) (15,15) (17,11) (19,1)
21 11 Yes (0,8) (2,16) (4,6) (6,0) (8,18) (10,10) (12,2) (14,20) (16,14) (18,4) (20,12)
22 12 ? (0,21) (1,0) (7,7) (8,11) (9,15) (10,8) (11,12) (12,14) (13,9) (14,6) (15,10) (16,13)

Table 12: Sample minimum or best-known independent dominating sets for Qn.

280

n k Co-ordinates of a maximum irredundant set of k kings on an n x n chessboard
7 16 (0,0) (2,0) (4,0) (6,0) (0,2) (2,2) (4,2) (6,2) (0,4) (2,4) (4,4) (6,4) (0,6) (2,6) (4,6) (6,6)
8 17 (0,0) (3,0) (7,0) (2,1) (1,2) (6,2) (0,3) (5,3) (6,3) (4,4) (5,4) (3,5) (4,5) (2,6) (3,6) (0,7) (7,7)
9 25 (0,0) (2,0) (4,0) (6,0) (8,0) (0,2) (2,2) (4,2) (6,2) (8,2) (0,4) (2,4) (4,4) (6,4) (8,4) (0,6) (2,6)

(4,6) (6,6) (8,6) (0,8) (2,8) (4,8) (6,8) (8,8)
10 27 (0,0) (2,0) (5,0) (9,0) (4,1) (0,2) (3,2) (8,2) (2,3) (7,3) (9,3) (1,4) (6,4) (7,4) (0,5) (5,5) (6,5)

(4,6) (5,6) (3,7) (4,7) (9,7) (2,8) (0,9) (3,9) (7,9) (9,9)

Table 13: Sample maximum irredundant sets for Kn.

n k Co-ordinates of a maximum irredundant set of k queens on an n x n chessboard
5 5 (0,0) (0,1) (0,2) (0,4) (4,0)
6 7 (0,0) (0,1) (0,2) (1,1) (2,2) (4,2) (5,1)
7 9 (0,0) (0,1) (0,2) (2,0) (2,1) (3,0) (4,1) (6,0) (6,1)
8 11 (0,0) (0,1) (0,2) (2,1) (3,0) (3,1) (3,2) (4,0) (6,0) (6,1) (6,2)
9 13 (0,0) (0,1) (0,2) (0,3) (2,0) (2,1) (3,0) (4,1) (6,0) (6,1) (6,3) (7,1) (7,3)
10 15 (0,0) (0,1) (0,2) (0,3) (0,8) (2,0) (4,0) (6,0) (6,1) (6,8) (7,1) (8,0) (9,0) (9,3) (9,7)

Table 14: Sample maximum irredundant sets for Qn-

k Solution Types Found Average Time
1 Even 0/1 ; Odd 0/1
2 Even 0/1 ; Odd 0/1
3 Even 0/0, 0/1, 1/2 ; Odd 1/1, 1/2
4 Even 0/0, 0/1, 1/2 ; Odd 0/1, 1/1
5 Even 0/1, 1/1, 1/2 ; Odd 1/1, 1/2
6 Even 0/1, 1/1 ; Odd 1/1, 1/2, 2/3
7 Even 1/2 ; Odd 1/2 0.3 sees
8 Even 1/2 ; Odd 1/2 2 sees
9 Even 1/2 ; Odd 1/2 4 sees
10 Even 1/2 3 sees

Odd 2/3 13 sees
11 Even 1/2 9 sees

Even 2/3 35 sees
Odd 2/3 35 sees

12 Even 2/3 150 sees
Odd 2/3 12 sees

13 Even 2/3 60 sees
Odd 2/3 80 sees
Odd 3/3 110 sees

14 Even 2/3 60 sees
Odd 3/4 240 sees

15 Even 2/3 5 mins
Odd 3/3 20 mins
Odd 3/4 24 mins

16 Even 2/3 3 hours
Odd 3/4 10 mins

17 Even 3/4 3 hours
Odd 3/4 1 hour

18 Even 3/4 7 hours
Odd 4/5 28 hours

19 Even 3/4 1 hour
Odd 4/5 6 hours

20 Even 3/4 4 hours
Odd 4/5 50 hours

21 Odd 4/5 30 hours

Table 15: Solution types found for ,(Q4k+1) = 2k + 1.

281

k Solution Type Sample Solution
1 Even 0/1 (0,2,1)
2 Even 0/1 (1,3,0,2,4)
3 Even 0/1 (2,5,1,4,0,3,6)
4 Even 0/1 (1,7,2,5,8,4,0,3,6)
5 Even 0/1 (8,7,2,4,3,9,0,5,10,1,6)
6 Even 0/1 (10,5,2,11,3,6,12,9,0,7,4,1,8)
7 Even 1/2 (6,3,10,1,14,9,2,8,5,12,0,11,4,7,13)
8 Even 1/2 (12,7,3,11,2,1,16,10,8,6,0,15,14,5,13,9,4)
9 Even 1/2 (8,15,12,6,3,1,18,11,2,10,7,17,0,13,16,5,14,9,4)
10 Even 1/2 (10,15,8,3,20,17,7,5,0,12,9,19,16,1,4,11,18, 14,2, 13,6)
11 Even 1/2 (16,19,6,3,18,13,7,17,2,12,22,1,11, 10,0,21,14,9,20,15,8,5,4)
12 Even 2/3 (18,11,6,19,0,5,8,4,20,12,24,16,13,21,9,1,22,15,2, 7 ,10,3,14,

17,23)
13 Even 2/3 (12,7,22,4,18,15,6,25,2,5,26,14,17 ,10,13,1,24,21,0,11,8,23,

20,3,19,9,16)
14 Even 2/3 (8,19,12,17,26,21,3,5,28,9,0,14,4,18,15,27, 11,23,20, 13,2,25,

6,1,10,24,22,7,16)
15 Even 2/3 (12,15,20,7,26,29,2,27,11,19,4,8,17, 14,30,3,24,16,13,1 ,6,21,

28,25,0,23,10,5,18,9,22)
16 Even 2/3 (8,21,24,27,20,15,32,7,4,23,0,16,6,31,17 ,1,13,18,30,14,19,

25,28,3,12,9,2,29,26,11,22,5,10)
17 Even 3/4 (2,23,28,15,8,5,14,31,6,25,11,29,4,33,21,18,13,27 ,32,12,19,

16,0,3,30,7,10,1,22,34,26,17,20,9,24)
18 Even 3/4 (7,21,28,25,14,9,20,35,2,11,34,29,0,12,17,1 ,32,22,19, 16, 13,

3,30,18,36,31,6,23,26,5,8,15,4,33,24,27,10)
19 Even 3/4 (26,13,32,10,14,5,24,15,28,37,2,9,36,3,30,20,38,16, 19 ,33,

23,18,6,1,17,7,21,29,0,35,34,11,8,27,4,31,22,25,12)
20 Even 3/4 (28,9,22,13,8,29,32,39,14,5,40,33,30,7,4,20,15,24,21, 11,36,

16,23,37,2,18,38,27,12,3,6,1,0,35,31,17,34,25, 10, 19,26)

Table 16: Even solutions found for ')'(Q4k+d 2k + 1.

k Solution Type Sample Solution
1 Odd 0/1 (1,0,2)
2 Odd 0/1 (3,0,2,4,1)
3 Odd 1/2 (2,0,5,3,1,6,4)
4 Odd 0/1 (7,6,3,0,4,8,5,2,1)
5 Odd 1/2 (7,3,1,6,9,0,4,8,5,2,10)
6 Odd 1/2 (9,0,3,10,6,2,11,5,8,12,1,4,7)
7 Odd 1/2 (7,12,3,8,4,14,1,9,6,0,13,10,5,2,11)
8 Odd 1/2 (9,4,13,16,3,12,7,5,8,2,15,0,14,10,1,6,11)
9 Odd 1/2 (15,4,7,16,13,6,17,0,10,9,8,18,1,12,5,2,11,14,3)
10 Odd 2/3 (0,10,13,16,5,20,1,14,12,6,8,2,17,9,3,18,15,19, 11,4,7)
11 Odd 2/3 (11,5,17,20,13,2,6,14,1,22,12,9,3,0,10,18,21, 16, 19,8,15,4, 7)
12 Odd 2/3 (7,14,11,22,5,9,23,4,19,24,12,16,1,13,10,6,3,0,21, 18, 15,2,20,

8,17)
13 Odd 2/3 (7,20,11,8,5,26,23,18,10,24,14,4,25,13,3,2,12,15,21 ,0, 1 7,6,1,

22,19,16,9)
14 Odd 3/4 (19,8,13,5,21,18,1,28,23,2,14,17,9,0,3,11,16,26, 12,22 ,25,6,20,

24,15,4,7,10,27)
15 Odd 3/4 (3,22,25,12,9,24,19,4,1,13,27,26,18,15,5,2,10,17, 14,30,21 ,0,

29,8,23,20,7,16,11,6,28)
16 Odd 3/4 (13,18,25,8,19,24,31,28,1,4,11,7,16,2,20,17, 14,0,29,26,5, 15,

21,32,27,12,23,6,3,10,30,22,9)
17 Odd 3/4 (9,24,13,10,31,7,27,22,33,2,11,16,18,30,3,34,20,15, 1 ,32, 14,

17,25,0,21,12,5,8,28,4,29,26,23,6,19)
18 Odd 4/5 (7,12,19,30,27,10,31,1,11,2,25,6, 18,34,22,17 ,35,21,5,15,33,4,

20,32,16,24,3,0,29,14,9,28,13,8,23,26,36)
19 Odd 4/5 (27,12,21,28,6,10,35,4,11, 16,33,0,5, 19,22,32,29,38,3,23, 18,

13,37,17,20,34,9,26,1,8,31,2,7,24,15,30,36,14,25)
20 Odd 4/5 (27,16,13,3,29,36,7,30,37,12,1,28,17 ,34,9,23,18,2,22,25,39,4,

14,19,33,6,20,40,35,26,5,0,21,32,11,8,15,24,31,10,38)
21 Odd 4/5 (13,28,19,26,37,12,9,18,3,34,41,17,11 ,42,35,4,31 ,25,20,38,24,

15,7,23,16,2,22,6,33,10,39,0,5,30,1,36,29,8,21, 14,27,32,40)

Table 17: Odd solutions found for ')'(Q4k+l) = 2k + 1.

282

References

[1] W. W. Rouse Ball, Mathematical Recreation and problems of past and present
times, MacMillan, London (1892).

[2] J. R. Bitner and E. M. Reingold, Backtrack programming techniques, Gomm.
AGM, 18 (1975), 651-656.

[3] A. P. Burger, E. J. Cockayne, and C. M. Mynhardt, Domination numbers for the
Queens' graph, Bull. lnst. Gombin. Appl. 10 (1994) 73-82.

[4] A. P. Burger, E. J. Cockayne, and C. M. Mynhardt, Domination and irredundance
in the queen's graph, Discrete Mathematics 163 (1997) 47-66.

[5] A. P. Burger and C. M. Mynhardt, Small irredundant numbers for queens graphs,
J. Gombin. Math. Gombin. Comput. 33 (2000),33-43.

[6] A. P. Burger and C. M. Mynhardt, Symmetry and domination in queens graphs,
Bulletin of the ICA 29 (2000), 11-24.

[7] E.J. Cockayne, S.T. Hedetniemi, and D.J. Miller, Properties of hereditary hyper­
graphs and middle graphs. Ganad. Math. Bull., 21 (4), 461 - 468, 1978.

[8] E. J. Cockayne, Irredundance in the queens' graph, Ars Gombin. 55 (2000), 227-
232.

[9] E. J. Cockayne, Chessboard domination problems, Discrete Mathematics 86
(1990) 13-20.

[10] E. J. Cockayne and C.M. Mynhardt, Properties of queens graphs and the irre­
dundance number of Q7, Australasian J. Combin. 23 (2001) 285-299.

[11] E. J. Cockayne and P. H. Spencer, On the independent queens covering problem,
Graphs and Combinatorics 4 (1988) 101-110.

[12] M. Eisenstein, C. M. Grinstead, B. Hahne, D. Van Stone, The queen domination
problem, Gongr. Numer. 91 (1992) 189-193.

[13] O. Favaron, G. H. Fricke, D. Pritikin, J. Puech, Irredundance and domination
in Kings graphs, preprint.

[14] G. H. Fricke, S. M. Hedetniemi, S. T. Hedetniemi, A. A. McRae, C. K. Wallis,
M.S. Jacobson, H. W. Martin, and W. D. Weakley, Combinatorial problems on
chessboards: a brief survey, in: Alavi and Schwenk eds., Graph Theory, Combina­
torics and Applications, vol. 1, Proc. Seventh Quadrennial Conj. on the Theory
and Applications of Graphs, Western Michigan University (Wiley, 1995).

(15] P. B. Gibbons, Computational methods in design theory, in The eRC Handbook
of Combinatorial Designs, G. J. Golbourn and J. H. Dinitz (eds.), CRG Press
(1996) Chapter 9, Section VI.

283

[16] P.B. Gibbons and J. A. Webb, Some new results for the queens domination
problem, A ustralasian Journal of Combinatorics 15 (1997) 145-160.

[17] C. M. Grinstead, B. Hahne, D. Van Stone, On the queen domination problem,
Discrete Mathematics 86 (1991) 21-26.

[18] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Robert Reynolds, Com­
binatorial problems on chessboards: II, in: Domination in Graphs, Advanced
Topics (1997) Chapter 6.

[19] Matthew D. Kearse, Computational methods and new results for chessboard
problems, MSc thesis, Department of Computer Science, University of Auckland,
April 1999,

[20] Matthew D. Kearse, Lower bounds on irredundance in the queens' graph,
preprint.

[21] Matthew D. Kearse and Peter B. Gibbons, Computational methods and
new results for chessboard problems, CDMTCS Technical Report 133,
Department of Computer Science, University of Auckland, May 2000,
http://www.cs.auckland.ac.nz/CDMTCS/research reports/133chess.pdf.

[22] E. Lucas, Recreations mathematiques, Gauthier- Villars, Paris (1891).

[23] Brendan D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms
26 (1998) 306-324. .

[24] Patrick Prosser, Hybrid algorithms for the constraint satisfaction problem, Com­
putational Intelligence 9 (1993) 268-299.

[25] J. D. Swift, Isomorph rejection in exhaustive search techniques, Proc. A. M. S.
Symp. Apple. Math. 10 (1958), 195-200.

[26] Johannes Waldmann, Private correspondence (1998).

[27] R. J. Walker, An enumerative technique for a class of combinatorial problems, in
Combinatorial Analysis (Proceedings of Symposia in Applied Mathematics, Vol.
X), American Mathematical Society, Providence, R. 1. (1960).

[28] W. D. Weakley, Domination in the queen's graph, Graph Theory, Combina­
tories, and Applications 2 (1995) 1223-1232.

[29) W. D. Weakley, Upper bounds for domination numbers of the queens graph,
Discrete Math., to appear.

[30] A. M. Yaglom and I. M. Yaglom, Challenging mathematical problems with
elementary solutions, volume l:Combinatorial Analysis and Probability Theory.
Holden-Day, San Francisco. (1964).

(Received 15/5/2000; revised 11/8/2000)

284

